Sums over Graphs and Integration over Discrete Groupoids
نویسنده
چکیده
We show that sums over graphs such as appear in the theory of Feynman diagrams can be seen as integrals over discrete groupoids. From this point of view, basic combinatorial formulas of the theory of Feynman diagrams can be interpreted as pull-back or push-forward formulas for integrals over suitable groupoids.
منابع مشابه
Crossed squares, crossed modules over groupoids and cat$^{bf {1-2}}-$groupoids
The aim of this paper is to introduce the notion of cat$^{bf {1}}-$groupoids which are the groupoid version of cat$^{bf {1}}-$groups and to prove the categorical equivalence between crossed modules over groupoids and cat$^{bf {1}}-$groupoids. In section 4 we introduce the notions of crossed squares over groupoids and of cat$^{bf {2}}-$groupoids, and then we show their categories are equivalent....
متن کاملActions of vector groupoids
In this work we deal with actions of vector groupoid which is a new concept in the literature. After we give the definition of the action of a vector groupoid on a vector space, we obtain some results related to actions of vector groupoids. We also apply some characterizations of the category and groupoid theory to vector groupoids. As the second part of the work, we define the notion...
متن کاملC*-algebras on r-discrete Abelian Groupoids
We study certain function algebras and their operator algebra completions on r-discrete abelian groupoids, the corresponding conditional expectations, maximal abelian subalgebras (masa) and eigen-functionals. We give a semidirect product decomposition for an abelian groupoid. This is done through a matched pair and leads to a C*-diagonal (for a special case). We use this decomposition to study ...
متن کاملOn Connected Diagrams and Cumulants of Erdős-Rényi Matrix Models
Regarding the adjacency matrices of n-vertex graphs and related graph Laplacian, we introduce two families of discrete matrix models constructed both with the help of the Erdős-Rényi ensemble of random graphs. Corresponding matrix sums represent the characteristic functions of the average number of q-step walks and q-step closed walks over the random graph. These sums can be considered as the d...
متن کاملSome measure theory on stacks of graphs
By counting symmetries of graphs carefully (or equivalently, by regarding moduli spaces of graphs as zero-dimensional orbifolds), certain measures on these collections (elsewhere called ‘exponential random graphs’) can be reinterpreted, with the aid of special cases of Wick’s theorem, as Feynman-style measures on the real line. Analytic properties of the latter measures can then be studied in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Categorical Structures
دوره 14 شماره
صفحات -
تاریخ انتشار 2006